Math 137/331 - Real Analysis I HW 7

1. Let *F* be a closed subset in \mathbb{R} , the distance from *x* to *F*, d(x, F) is defined as: $f(x) = d(x, F) = \inf\{|x - y| : y \in Y\}$ Prove that $\frac{f(x + y)}{|y|} \to 0$ for almost a.e. $x \in F$

2. Suppose *F* is of bounded variation and continuous. Prove that $F = F_1 - F_2$, where both F_1 and F_2 are monotonic and continuous.

3. One-sided Hardy Littlewood maximal function f_+^* is defined as

$$f_{+}^{*}(x) = \sup_{h>0} \frac{1}{h} \int_{x}^{x+h} |f(y)| dy$$

Show that $m(E_{\alpha}^{+}) = \frac{1}{\alpha} \int_{E_{\alpha}^{+}} |f(y)| dy$, where $E_{\alpha}^{+} = \{x \in \mathbb{R} : f_{+}^{*} > \alpha\}$. Hint: Consider $F(x) = \int_{0}^{x} |f(y)| dy - \alpha x$, apply rising sun lemma (lemma 3.5) to this function, to see $E_{\alpha}^{+} = \bigcup_{j=1}^{\infty} (a_{j}, b_{j})$ and $F(a_{j}) = F(b_{j})$.

- **4.** Show that if $f : \mathbb{R} \to \mathbb{R}$ is absolutely continuous, then
 - (a) *f* maps sets of measure zero to sets of measure zero.
 - (b) *f* maps measurable sets to measurable sets.

5. Let $f : \mathbb{R} \to \mathbb{R}$. Prove that *f* satisfies the Lipschitz condition

$$|f(x) - f(y)| \le M|x - y|$$

for some *M* and all $x, y \in \mathbb{R}$, if and only if *f* satisfies the following properties:

(a) *f* is absolutely continuous.

(b)
$$|f'(x)| \le M$$
 for a.e. x.

6. If a, b > 0, let $f(x) = x^a \sin(x^{-b})$ for $0 < x \le 1$ and f(0) = 0. Prove that *f* is of bounded variation in [0, 1] if and only if a > b.

7. Show that the set of discontinuities of a monotone function is at-most countable.

8. Let $f : [a,b] \to \mathbb{R}$ be differentiable function. If the derivative f' is uniformly bounded on [a,b], then show that f' is Lebesgue integrable and that

$$\int_{[a,b]} f' dx = f(b) - f(a).$$